I Characteristic Foliations

by Th^m.I.5 we know the characteristic foliation on a surface determines the "germ" of a contact structure here we study characteristic foliations more carefully (why are surfaces so important? can cut a contact manifold into simple pieces using surfaces. If you understand the contact structure on the pièces and near the surfaces you might understand contact str on original manifold)

let Σ be a surface ω on area form on Σ τ a vector field on Σ the <u>divergence of τ </u> is the function $div_{\omega}\tau$ satisfying $J_{\tau} \omega = (div_{\omega}\tau) \omega$ or equivalently $di_{\tau}\omega = (div_{\omega}\tau)\omega$

Note:
1)
$$if x is a singular point of v ($ve. v(x) = 0$),
then the divergence is independent of w (def^2 same
indeed let $w' = e^{f}w$ any positive function can
 $d_{v}w' = d(e^{f}(vw)) = e^{f}(dfn(vw) + d(vw))$
 $e^{f}(dfn(v)w + d(vw))$
 $e^{f}(dfn(v)w + d(vw))$
 $e^{f}(dfn(v)w + d(vw))$
 $e^{f}w$
 $df(v)w - dfn(vw)$$$

So
$$div_{\omega}, v = df(v) + div_{\omega}v$$

if $v(x) = 0$ then $df(v(x)) = 0$ so at x
 $div_{\omega}, v = div_{\omega}v$

z) let's compute
$$div_{\omega} fv$$

 $dl_{fv} \omega = d(fl_{v} \omega) = df_{\lambda}l_{v} \omega + f dl_{v} \omega$
 $= (df(v) + f div_{\omega} v) \omega$

So if x a singular point of
$$v$$
 and $div_{\omega}v = 0$ at x
then $div_{\omega}v' = 0$ at x for any rescalling $v' of v$

$$\frac{P_{roof}}{P_{roof}}: (=)$$
on $\Sigma \times [-1,1]$ with t variable on $[-1,1]$
consider a contact 1 -form
 $\chi = \beta_{t} + u_{t} dt$
for β_{t} a 1 -form on Σ
 u_{t} a function on Σ
here $\Sigma = \Sigma \times \{o\}$
 $\Sigma_{3} = \ker \beta_{0}$

$$dd = d_{2}\beta_{+} + dt \wedge \frac{\partial \beta_{+}}{\partial t} + d_{4} \wedge dt \wedge \frac{\partial \beta_{+}}{\partial t} + \beta_{+} \wedge dt \wedge \frac{\partial \beta_{+}}{\partial t} + \beta_{+} \wedge d_{4} \wedge d_{4} + u_{+} dt \wedge d_{6}\beta_{+}$$

$$= \left(\beta_{+} \wedge d_{2}u_{+} + u_{+} d_{2}\beta_{+} - \beta_{+} \wedge \frac{\partial \beta_{+}}{\partial t}\right) \wedge dt = 0$$

$$let \times be \ a \ singularity \ of \ Z_{1} \quad (ne \ zero \ of \ \beta_{0})$$

$$fuen \ at \ \times \quad U_{0} d_{2}\beta_{0} \wedge dt = 0$$

$$so \ d\beta_{0} \neq 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} \neq 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} \neq 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} \neq 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$so \ d\beta_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$d_{0} = 0 \ near \ \chi \ on \ \Sigma$$

$$(e^{-)})$$

$$if \ \chi = \beta_{+} + u_{+} dt \ is \ any \ l - form \ on \ \Sigma \times \Sigma^{-1}(1)$$

$$then \ if \ is \ a \ contact \ form \ \omega \ \chi^{-1}(2) \ \chi^{-1}(2) \ \chi^{-1}(2)$$

$$u_{+} \ d\beta_{0} + \beta_{+} \wedge (du_{0} - \frac{\partial b_{0}}{\partial t}) \neq 0$$

$$u_{+} \ d\beta_{0} + \beta_{+} \wedge (du_{0} - \frac{\partial b_{0}}{\partial t}) \neq 0$$

$$we \ are \ given \ \mathcal{F}$$

$$let \ w \ be \ an \ area \ form \ on \ \Sigma \ (guiven \ correct \ or^{-2})$$

$$suppose \ \mathcal{F} \ is \ onion \ table \ (so \ \mathcal{F} = f_{0} \ w \ of \ some \ vector \ field \ \tau)$$

$$let \ w \ be \ the \ function \ on \ \Sigma \ s.t. \ d\beta_{0} = u \ w$$

 $= \omega(Jv, v) \omega(v, Jv) - \omega(Jv, Jv) \omega(v, v)$ $= (\omega(v, Jv))^{2} \ge 0 \quad \text{and} \ge 0 \quad \text{if } v \ne 0$ $so \ v \ has \ desired \ property$ $if \ F \ not \ orientable, \ men \ can \ work \ in \ a \ coven$ $\underbrace{exercise:} \ check \ this \ case$

Proof: let
$$\alpha = \beta_t + u_t dt$$
 be a contact form on a
Neighborhood $N = \mathbb{E} \times [-1, 1]$ of \mathbb{E} in M
let ω be an area form on \mathbb{E}
since $\Re(\mathbb{E}) \to \mathfrak{L}'(\mathbb{E}) : \mathbb{T} \mapsto U_v \omega$ is an isomorphism
 \mathbb{E} vector field \mathbb{V}_t such that $(\mathbb{V}_t^{(\omega)}) = \beta_t$
penturb \mathbb{V}_t to \mathbb{T}_t^+ s.t. \mathbb{V}_0' satisfies \mathcal{P}
let $\beta_t^+ = (\mathbb{V}_t^+, \omega)$ and
 $\alpha' = \beta_t^+ + u_t dt$
if \mathbb{V}_t' close to β_t^+ , then α' close to α
and since and $\alpha > 0$ is an open conduction
 α' is a contact for m

and so is
$$\alpha_{s} = s \alpha' + (l - s) \alpha$$

so Gray's T4^m (T4^m II.6) gives an isotopy
 $\psi_{s}: M \rightarrow M$ st. $\psi_{s}^{*} \alpha_{s} = \alpha_{0}$
since $\Sigma_{3'=her\alpha'}$ is given by β_{0}' it
satisfies β and $\psi_{s}^{-1}(\Sigma)$ is an isotopy
of Σ to $\psi_{1}'(\Sigma)$

a generic vector field has isolated zeros and they are either

call a singular point positive if $div_{\omega}(v) > 0$ <u>negative</u> if $div_{\omega}(v) < 0$ for any area form ω inducing orientation on Σ and any vector field v directing Σ_3 <u>note</u>: this is equivalent to whether or not the orientation on 3 and on $T\Sigma$ agree at the singularity indeed if $x = \beta_f + u_f dt$, then at a singular point x $\alpha n dx = u_f d\beta_f n dt > 0$ (since $\beta_f = 0$ at x)

So
$$u_0 d\beta_0$$
 is a positive volume form on \mathbb{Z} near x
let \mathcal{V} be a vector field st:
 $l_{\mathcal{V}} = u_0 d\beta_0 = \beta_0$
we have $dl_{\mathcal{V}} = u_0 d\beta_0 = d\beta_0$
so $div_{u_0d\beta_0} = U = \frac{1}{u_0}$
So if divergence >0 then $u_0 > 0$
and $d\beta_0$ induces corrector $u_0 = nT_x \mathbb{Z}$
but also induces or $u_0 = T_x$
 \vdots $div_0 > 0 \Rightarrow t$ singular point
Similarly for $div < 0$

exercise:
if x is a nodal singular point then
x is positive if
x is negative if
let's think about saddle singular points
consider
$$\alpha = dz + aydx + bxdy$$
 for a, b>

 $\alpha \wedge d\alpha = (dz + \alpha \gamma dx + b \times d\gamma) \wedge (-\alpha dx \wedge d\gamma + b dx \wedge d\gamma)$ = (b-a) dx \wedge d\gamma \wedge dz

0

So
$$\kappa$$
 contact $(\Rightarrow) b-a \pm 0$
positive contact $(\Rightarrow) b-a > 0$
if $b-a < 0$ then orient \mathbb{R}^3 by $dy \wedge dx \wedge dz$
so positive contact strate
xy-plane has a singularity at (0.0)
let $\omega = dx \wedge dy$
 $note v = \begin{bmatrix} b \\ -ay \end{bmatrix}$ satisfies $l_v \omega = \alpha \Big|_{xy-plane}$

so characteristic fold is

we end this section with a lemma we need later.

<u>lemma 3</u>:

let L be a Legendrian arc in IC(M,3) xel an isolated singular point of Zz IF ? crosses TZ along Lat x in a left - handled way then x is a source (sink) of fold along L if the singular point is positive (negative)

if ? crosses TE along Lat x in a right-handled way then x is a sink (source) of fol[®] along L if the singular point is positive (negative) <u>example</u>: left handed tristing we see K + or t $L \longrightarrow \uparrow$ so fol¹ could be and or right handled twisting we see Mr + 246 so fol^m must be

Proof: we chech left-handed twisting at + singularity <u>evenuise</u>: Check other cases let's recall how to orient $l_x = \overline{l_x} \cap \overline{l_x} \Sigma$ a vector $v_1 \in l_x$ orients l_x if

there is a vector $v_2 \in \mathcal{Z}_{\star}$, and $v_3 \in \mathcal{T}_{\star} \mathbb{Z}$ such that v_1, v_2 orients \mathcal{Z}_{\star} , v_1, v_3 orients $\mathcal{T}_{\star} \mathbb{Z}$ and v_1, v_2, v_3 orients $\mathcal{T}_{\star} M$

note V, V, V, or rents T, M